Ultracold atoms in a tunable optical kagome lattice.

نویسندگان

  • Gyu-Boong Jo
  • Jennie Guzman
  • Claire K Thomas
  • Pavan Hosur
  • Ashvin Vishwanath
  • Dan M Stamper-Kurn
چکیده

We realize a two-dimensional kagome lattice for ultracold atoms by overlaying two commensurate triangular optical lattices generated by light at the wavelengths of 532 and 1064 nm. Stabilizing and tuning the relative position of the two lattices, we explore different lattice geometries including a kagome, a one-dimensional stripe, and a decorated triangular lattice. We characterize these geometries using Kapitza-Dirac diffraction and by analyzing the Bloch-state composition of a superfluid released suddenly from the lattice. The Bloch-state analysis also allows us to determine the ground-state distribution within the superlattice unit cell. The lattices implemented in this work offer a near-ideal realization of a paradigmatic model of many-body quantum physics, which can serve as a platform for future studies of geometric frustration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-dimensional sawtooth and zigzag lattices for ultracold atoms

We describe tunable optical sawtooth and zigzag lattices for ultracold atoms. Making use of the superlattice generated by commensurate wavelengths of light beams, tunable geometries including zigzag and sawtooth configurations can be realised. We provide an experimentally feasible method to fully control inter- (t) and intra- (t') unit-cell tunnelling in zigzag and sawtooth lattices. We analyse...

متن کامل

Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside ...

متن کامل

Fibonacci Optical Lattices for Tunable Quantum Quasicrystals

We describe a new type of quasiperiodic optical lattice, created by a physical realization of the abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a generalization of the Fibonacci tiling. Calculation of the energies and wavefunctions of ultracold atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous mome...

متن کامل

Controllable diffusion of cold atoms in a harmonically driven and tilted optical lattice: Decoherence by spontaneous emission

We have studied some transport properties of cold atoms in an accelerated optical lattice in the presence of decohering effects due to spontaneous emission. One new feature added is the effect of an external AC drive. As a result we obtain a tunable diffusion coefficient and it’s nonlinear enhancement with increasing drive amplitude. We report an interesting maximum diffusion condition. PACS nu...

متن کامل

Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.

We demonstrate the experimental implementation of an optical lattice that allows for the generation of large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted tunneling in a tilted optical potential, we engineer spatially dependent complex tunneling amplitudes. Thereby, atoms hopping in the lattice accumulate a phase shift equivalent to the Aharonov-B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 108 4  شماره 

صفحات  -

تاریخ انتشار 2012